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Abstract

Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear
function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic
energy in the linear velocity field approximation is known as the collective kinetic energy.
But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear
velocity ficlds. o remove this limitation, the theory of symplectic dynamical symmetry
is developed for classical systems. A classical phase space for a self-gravitating symplectic
system is a co-adjoint orbit of the noncompact group Sp(3,R). The degenerate co-adjoint
orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact
subgroup U(3) is the synimetry group of the harmonic oscillator. The Hamiltonian equations
of motion on each orbit form a Lax system X = [X, F], where X and F are elements of the
symplectic Lie algebra. The clements of the matrix X are the generators of the symplectic
Lie algebra, viz., the oue-body collective quadratic functions of the positions and momenta
of the galactic wasses. The matrix F is composed from the self-gravitating potential energy,
the angular velocity. and the hydostatic pressure. Solutions to the Hamiltonian dynamical
system on Sp(3,.R)/U(3) are given by symplectic isospectral deformations. The Casimirs of
Sp(3,R), equal to the traces of powers of X, are conserved quantities.

1 Riemann Ellipsoids

A remarkably unified picture of rotating systems is attained by adopting an algebraic perspective.
(lassical rotating hodies such as galaxies (period=10"s), stars (10%), and fluid droplets (1s), and
quantum rotating nuclei (1072%s) may he described in terms of a single'subgroup GCM(3) (for
general collective motion in 3 dimensions) of the noncompact symplectic Lie group Sp(3,R). In
classical physics, the GCM(3) theory is identical to the Riemann ellipsoidal model [1, 2, 3.

A Riemann ellipsoid is a uniform density thiid with an ellipsoidal boundary whose velocxty field
is a linear function of the inertial frame Cartesian position coordinates X. The isodensity surfaces
of elliptical galaxies are very nearly ellipsoidal [4]. Linear velocity fields it (the superscript L
indicates a laboratory inertial frame quantity) span the dynamical continuum from rigid rotation,
LX) = &t x ¥ to irrotational low, ¥V x 7t = 0. Thus, Riemann ellipsoids can model a wide
class of rotating systems.

The principal aim of this paper is to present the classical symplectic model with particular em-
phasis upon its relationship with the Riemann ellipsoidal model [5]. But first the Riemann model
and its equivalence to the algebraic GOCM(3) theory will be reviewed. To describe a linear velocity
field, the dynamical group GCM(3) contains the general linear group GL(3,R) as a subgroup. In
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addition, to characterize the size, deformation, and orientation of an ellipsoid, the GCM(3) Lie
algebra includes the inertia tensor.

There are several advantages to adopting the powerful dynamical group method. First, the
Euler fluid equations of motion for a Riemann ellipsoid can be proven to form a Hamiltonian
dynamical system [3, 6]. A Riemann ellipsoid phase space is a co-adjoint orbit of GCM(3), and its
Poisson bracket is inherited from the Lie algebra structure of GCM(3). Moreover, this Hamiltonian
system is a special Lax pair system [7]. Second, the group method is not restricted to continuum
fluids. GCM(3) dynamical symmetry applies equally well to discrete systems of particles. Third,
GCM(3) dynamical symmetry also applies to some quantum rotating bodies. For example, the
Bohr-Mottelson irrotational surface wave model of collective rotational and vibrational states
forms an irreducible unitary representation of GCM(3) [8, 9, 10]. Finally, GCM(3) symmetry
suggests a natural extension to symplectic Sp(3,R) dynamical symmetry [11]. The latter replaces
the collective kinetic energy of the GCM(3) theory by its exact microscopic expression.

The hydrodynamic Riemann ellipsoidal model provides a physical interpretation to the abstract
GCM(3) theory: The length (7 of the Kelvin circulation vector, a constant of the motion for a
frictionless, homoentropic fluid flow, is the Casimir invariant for GCM(3) [6].

The velocity fields of rigid rotors and irrotational droplets have very different Kelvin circulation
vectors C. Suppose the rotating system has an ellipsoidal boundary with semi-axes lengths ay.
The inertial frame Kelvin circulation vector, projected onto the kth body-fixed axis, is defined as
the line integral of the velocity field {7 around the boundary of the ellipse Dy in the i — j principal
plane for 7, 7, k cyclic. According to Stoke’s theorem, these line integrals equal the surface integrals
of the curl of the velocity field,

A’I — — - - -
o= =Y [ ¥x0.48, (1)
AT JaDy, I Dk

where U denotes the projection of the inertial frame velocity field onto the body-fixed axes, and
M is the fluid’s mass. (

By definition, the curl of the velocity field of an irrotational droplet is zero, and, hence,
the Kelvin circulation of an irrotational fluid vanishes, C =0. Fora rigid rotor velocity field,
V x U = 2&. Because maa; is the area of the ellipse Dy, the rigid rotor circulation components
equal Cy = (2M/5)a;e;wi . For a general linear velocity field, the curl is a constant vectorfield v x
U= 5—{- 2@, where C is called the uniform vorticity. As the uniform vorticity ranges continuously
from zero to the negative of twice the angular velocity, the complete Riemann sequence from rigid

rotation to irrotational flow is traversed.

2 GCM(3) Dynamical Symmetry

The symplectic algebra Sp(3,R) consists of the inertia, virial momentum, and kinetic tensors [11]:

Q}; = Z Hl(,Xm',XO,J‘,
N = ) XaiPoj, (2)
I}J = Z:nl;;lP(“'Pa]',
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where the sums are carried over the particle index a = 1,..., A, m, denotes the mass of particle
a, and X,, P, are the inertial frame vector Cartesian position and momentum of particle a. In
fluid dynamics, the sums over particles are replaced by integrals over the density distribution, e.g.,

i =Jp(X)XiX;X. The Poisson brackets close to form the symplectic algebra:

130
{vadb} = 0,
{QL. N} = 6uQk + 6:Q%

{Til;’TlEJl} = 0»
(NETEY = 8uT)i + 64T}
{ }J,Tb} = (SlkNJI; + 5,1N}1 + 5jkNilf + (5]‘1Nilz,.

The general collective motion GCM(3) subalgebra includes only the inertia tensor Q,LJ and the
virial momentum tensor N};. The rotational ROT(3) subalgebra is spanned by just the inertia
tensor and the antisymmetric part of the viral momentum tensor, viz., the angular momentum
Lt = t’,’_,'kNil;. The Lie algebra GL(3,R) of the general linear group is generated by the virial
momentum tensor, and the Lie algebra SO(3) of the rotation group is generated by the angu-
lar momentum. The inertia tensor generates a 6 dimensional R° abelian Lie algebra. GCM(3)
and ROT(3) are semidirect s Lie algebras of the abelian ideal R® with GL(3,R) and SO(3),
respectively. _

In the principal axis frame, the inertia tensor () is, by definition, diagonal, and its eigenvalues
are proportional to the squared axis lengths «f of the inertia ellipsoid.

Although the exact kinetic tensor 73, is not an element of GCM(3), its linear velocity field value,
the collective kinetic tensor, is a function of the algebra generators, [12] ¢ = *N - Q™' - N. The
Kelvin circulation of a linear velocity field may be expressed in terms of the GCM(3) generators
as O = ék,'j(Q_]/Z -N - Ql/z)u.

Time evolution in the classical collective models based upon ROT(3), GCM(3), and Sp(3,R)
is governed by Hamiltonian dynamics of a special type known as a Lax system. Consider first
the simple case of ROT(3) for which the dynamics corresponds to Euler rigid body rotation. If
the inertia ellipsoid is rotating with an angular velocity {4i; = €;jpwy and L;; = Nij — Nj;i is the
angular momentum tensor. then Hamiltonian dynamics is given by

L=[L] (3)

In terms of vectors, this equation is the familiar law L = —& x L that, determines the precession
of the angular momentum vector in the body-fixed frame.

A matrix equation of the form X = [F, X] is called a Lax equation and X — F are referred to
as a Lax pair [13, 14]. A useful property of any Lax equation is that the trace of any power of X
is conserved. Let [, denote the trace of the pth power of the matrix X.

|

Iy = S TH(X)” (4)
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For any Lax equation, it is evident that every [, is a constant of the motion,
Iy =Te (X' X) =Tr (X" [F,X]) = Tt (X»'FX = X?F) = 0. (5)

In the case of the Euler equation, I, = —L-Listhe negative of the squared length of the angular
momentum vector. If p is odd, then [, is zero. If p > 2 is even, then [, is a function of the squared
length of the angular momentum vector. Thus, there is only one independent invariant among
the Lax invariants.

Suppose that X(t) is a solution to the Lax equation, X = [F, X], corresponding to the initial
condition X = Xg. If g(t) is a smooth curve of invertible matrices satisfying the matrix differential
equation ¢ = F - g with the initial condition g = I, then the solution to the Lax equation is just
the isospectral deformation,

X(t)=g(t)- Xo-g(t)7". (6)

This is proven using the identity dg™'/dt = —g~'gg~". If Q is constant, the matrix differential

equation ¢ = § - y for the Euler equation has the unique solution ¢g(t) = exp({dt) for the initial
condition g(0) = 1. Thus, ¢(f) is a curve in the rotation group SO(3), and the isospectral
deformation L(t) = ¢(1)Log(t)™" describes explicitly the precession of the angular momentum
in the body-fixed frame resulting from the rotation g(t) of the intrinsic frame relative to the
laboratory frame. Because of the choice of initial conditions for g, Lo represents the constant
angular momentum vector in the inertial laboratory frame.

To present the time evolution for Riemann ellipsoids as a Lax system, suppose the potential
energy in the body-tixed frame Vo= V(ag, ay,a3) 1s a smooth function of the axes lengths. For
a star or galaxy, V is the attractive gravitational self- energy. For a nucleus, V may be approxi-
mated by the sum of the attractive surface energy and the repulsive Coulomb energy. Define the
Chandrasekhar potential encrgy tensor W in the rotating frame to be the diagonal matrix,

0
M"','j = —(Sij(tij(}-;‘;/:, (7)
and, to impose a coustraint to constant volume, define the pressure tensor II = pv to be the
product of the hydrostatic pressure p times the ellipsoid’s volume v = 4ma aza3/3. Hamiltonian
dynamics for Riemann ellipsoids is given as follows [7]:

Theorem. If the inertia ellipsoid is votating with an angular velocity §;; = €;;4wy, then the
Riemann ellipsoid Hamiltonian dynamical system is equivalent to the Lax system, X = [F, X],
where the 6 x 6 real matrices X and ' in the body-fixed frame are given by

(N =Q Q I
‘\:(f. —t/\/)*"ﬂz((w+n)-Q-1 Q)' (8)

The quadratic Lax invariant equals the negative of the squared length of the Kelvin circulation
vector, I, = Tr(N? — - Q) = —("2. The higher order Lax invariants are either zero (odd powers)
or are functions of the circulation vector's squared length.

The phase space {or a Riemann ellipsoid obeying the Lax equation is a co-adjoint orbit of

GCM(3):
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Theorem. Each Riemann ellipsoid orbit is diffeomorphic to some coset space of GCM(3). The
coset depends upon the value of the circulation C':

0. = { GEM(3)/S0(2) = R*xS,;, C#0, dim= 14 9)
T GOM(3)/S0(3) = RY, C =0, dim=12

The degenerate orbit is diffeomorphic to 12-dimensional Euclidean space. This irrotational
flow phase space, coordinatized by ag,,T2,, @, To for the quadrupole and monopole degrees of
freedom, was quaytized by A. Bohr. The generic orbits C' # 0 were undiscovered for many years
because the significant role of Lie groups in this problem was not appreciated by the Copenhagen
school. The generic orbits are diffeomorphic to the Cartesian product R'? x S, of Euclidean space
with the two-dimensional sphere. The topology of the sphere forces the circulation to be quantized
to integer multiples of i in a way parallel to the usual angular momentum quantization. Thus, the
spectrum of the squared length of the quantum circulation operator is quantized to C'(C' + 1)R2,
where C is a nonnegative integer.

3 Sp(3,R) Dynamical Symmetry

Classical symplectic Sp(3,R) time evolution in the rotating frame is given by the Lax equation,
X = [F, X], if, in the Lax matrix X, the linear approximation ¢ to the kinetic energy is replaced
by its exact expression T. lu this way, the restriction to linear velocity fields of the Riemann
GCM(3) model is removed in the symplectic Sp(3,R) theory.

The symplectic conservation laws are provided by the Lax invariants I,. The quadratic Casmir
invariant of the symplectic algebra is the quadratic Lax invariant, C®) = Tr(N? — Q- T). Note
that for a linear velocity field, the quadratic symplectic invariant simplifies to the negative of the
squared length of the Kelvin circulation vector. The odd order invariants vanish. The quartic
symplectic Casimir invariant is the quartic Lax invariant,

CW = Tr (NQ — Q'N)(TN — *NT)] ~ 1/2Tr [(N? — QT)?]. (10)
There is only one more independent Casimir and Lax invariant C(®) = I4: the higher order invari-
ants are functionally dependent upou the three independent Casimirs C?P = [, for p = 2,4,6.

Since the matrices X and £ are elements of the symplectic Lie algebra, the following theorem
may be proved:

Theorem. Every solution to the classical symplectic Lax system is given by a isospectral trans-
formation g(t) € Sp(3,R) applied to the initial state

X(1) = g(t) - Xo- g(t)", (11)

where Xo and X are elements of the symplectic Lie algebra sp(3,R). The group element g(t) is a
solution to the matrix differential equation ¢ = Fg with the initial condition ¢ = I if and only if
X is a solution to the Lax equation with the initial condition X = Xo.
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Consider the co-adjoint orbit of the symplectic group through the point X,
Ox={y9-X-g7' | g€ Sp(3,R)}. (12)

The co-adjoint orbit is regarded as a surface in the Euclidean symplectic dual space, sp(3, R)*. A
manifold that intersect each co-adjoint orbit exactly once is called a “traﬂsversal.” A transversal
7 for the symplectic co-adjoint group action is provided by a three-dimensional surface {15, 16]

T = {‘;‘ = ( 2 —05 ) €sp(3,R)* | §= dia,g(sl,sg,.sa)}. (13)

Transversal points correspond to elementary systems for which the virial momentum tensor van-
ishes, N = 0, and the inertia and kinetic tensors are equal and diagonal, @ = T = S. Since the
inertia and kinetic tensors are positive-definite, the physically relevant transversal consists of only
those points for which S is positive-definite, s; > 0.

An orbit of the transversal point S € 7 is diffeomorphic to a coset space of the symplectic
group modulo the isotropy subgroup. These isotropy subgroups may be proven to be subgroups
of the unitary group,

A
U(3) ~ {( v ) € Sp3,R) | U+iV € U(3)} , (14)
and, thereby, the coset spaces are given explicitly as follows [15, 16, 5]:

Theorem. The symplectic phase spaces are diffeomorphic to coset spaces of Sp(3,R):

Sp(3, R)/[U(L) x ( ) x U(1)], s; distinct, dim =18
Os =<4 Sp(3, R)/[U(2) x U(1)], 81 = 83 # s3, dim =16 (15)
Sp(3, RY/U(3), 81 = 8 = 83, dim =12

The degenerate orbit Sp(3,R)/U(3) is diffeomorphic to the complex Siegel half- plane. In future
work, the dynamical system on the Siegel half-plane will be reported.
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